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We present an almost fully analytical technique for computing Casimir interactions between periodic lamellar
gratings based on a modal approach. Our method improves on previous work on Casimir modal approaches for
nanostructures [Phys. Rev. A 82, 062111 (2010)] by using the exact form of the eigenvectors of such structures,
and computing eigenvalues by solving numerically a simple transcendental equation. In some cases eigenvalues
can be solved for exactly, such as the zero-frequency limit of gratings modeled by a Drude permittivity. Our
technique also allows us to predict analytically the behavior of the Casimir interaction in limiting cases, such as
the large-separation asymptotics. The method can be generalized to more complex grating structures and may
provide a deeper understanding of the geometry-composition-temperature interplay in Casimir forces between
nanostructures.
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I. INTRODUCTION

Geometry, material composition, and temperature can
strongly influence the Casimir interaction [1] between objects
separated by micron and submicron gaps. Recent theoretical
developments have shown how to compute the Casimir force
between complex structures using a variety of methods [2–5].
Among these, we mention techniques based on the summation
of zero-point energies [6–9], which are suitable for high-
symmetry problems; the scattering approach which requires
the computation of the reflection matrices of the scatterers
[10–13]; and full-wave numerical techniques, which compute
the force from the Maxwell stress tensor [4,5,14].

In a previous paper [15] a modal approach was proposed
to calculate finite-temperature Casimir interactions between
two-dimensional (2D) periodically modulated surfaces. This
method uses the scattering formula for the Casimir free energy
and computes the reflection amplitudes of the scatterers by de-
composing the electromagnetic field into their natural modes.
The modal approach is based on a plane-wave expansion of the
fields and a Fourier decomposition of the spatial-dependent
permittivity of the structures, in the same way as done
in rigorous coupled-wave approaches (RCWA) in classical
photonics [16]. The modal method is limited to periodic
structures, such as photonic crystals and metamaterials. While
other more general numerical scattering techniques exist, the
modal expansion provides insight into the different (photonic,
plasmonic, etc.) mode contributions to the Casimir force,
thereby allowing the unveiling of otherwise hidden balances
[8,17,18]. Other RCWA techniques, not based on modal
methods, have been also used by the Casimir community to
study Casimir forces [3] and nanoscale heat transfer [19] in
grating structures.

In Ref. [15] both the eigenmodes and their eigenfrequencies
were computed numerically by solving a non-self-adjoint
eigenvalue problem [20,21]. In this paper we improve this
previous work by developing an almost fully analytical
modal approach to compute Casimir interactions between

one-dimensional (1D) lamellar grating structures, which is a
generalization to Casimir physics of well-developed methods
in grating theory [22,23]. The key feature of our method is that
the eigenmodes of the grating can be solved for analytically
without any Fourier expansion of the permittivity, while the
eigenfrequencies are solutions to a simple transcendental
equation. Analytical expressions for the eigenfrequencies can
be found in some limiting cases, such as for perfectly reflecting
gratings, and for the low-frequency limit of real material
gratings, described by simple Drude or plasma permittivities.
The quasianalytical modal approach also allows us to exactly
demonstrate some properties of the scattering operators and to
derive expressions for the Casimir interaction in some limiting
cases, such as the large-distance or low-frequency limit, and
the behavior of the force at high temperatures. The method can
be generalized to more complex structures beyond 1D lamellar
gratings and can also provide a detailed framework for the
analysis of other fluctuation-induced interactions in nanostruc-
tures, including thermal emission and near-field heat transfer.

The general setup is similar to that of Ref. [15], which we
briefly outline here. Within the framework of the scattering
approach, the calculation of the Casimir free energy

F(a) = 1

β

∞′∑
l=0

Tr ln[1 − R←−
L · X−→(a) · R−→

R · X←−(a)], (1)

is essentially reduced to the calculation of the scattering
matrices of isolated objects. The symbol Tr indicates the
trace over spatial and polarization degrees of freedom [15].
Here, β = 1/(kBT ) is the inverse temperature, X represents
translation matrices that depend of the distance a between
the gratings, and R are their reflection matrices. All these
matrices are evaluated at the Matsubara imaginary frequencies
ωl = iξl = i2πlkBT /h̄ [24], and the primed sum indicates that
the l = 0 term has half weight. The arrows under the reflection
and translation matrices indicate the direction of propagation
of light; for example, R←−

L is the reflection on the left grating for
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FIG. 1. (Color online) Schematic representation of scattering of
an electromagnetic field on a 1D grating.

light propagating from left to right. The translation matrices
are diagonal in a plane-wave, Rayleigh basis (see Ref. [15] for
explicit expressions).

Our goal in the rest of the paper is to compute the
reflection matrix of an isolated 1D lamellar grating with the
quasianalytical modal technique. In the following we will
analyze the scattering properties of a 1D lamellar grating
of depth d and period p = p1 + p2, where p1 is the width
of the grooves and p2 the width of the teeth (see Fig. 1).
We divide the 1D lamellar grating into three regions: (i) the
homogeneous, vacuum region above the grating, z > 0; (ii) the
region z < −d below the grating, filled with a homogeneous
medium of permittivity ε(ω) and permeability μ(ω); and (iii)
the grating region −d < z < 0, where the space is filled with
the modulated medium ε(x; ω) and μ(x; ω) describing the 1D
lamellar grating. In each ith region (i = v, vacuum region;
i = g, grating region; and i = m, bulk-medium region), the
solution of Maxwell’s equations can be written as

F(i) (x,z) =

⎛
⎜⎝

Ex (x,z)
Ey (x,z)
Hx (x,z)
Hy (x,z)

⎞
⎟⎠

(i)

=
∑
ν,s

A(s,i)
ν Y(s,i)

[
x,λ(s,i)

ν

]
eiλ(s,i)

ν z,

(2)

where we have considered the four independent trans-
verse field components (the remaining two components can
be directly calculated from the previous four). Moreover,
since the system is invariant with respect to translations along
the y direction, eigenmodes have a eikyy plane-wave form,
which we omitted in the above equation. Y(s,i)[x,λ(s,i)

ν ] is a

column vector describing the x dependence of the eigenvector
with corresponding eigenvalue λ(s,i)

ν , where ν labels the
eigenvalue and s denotes one of the two possible polarizations.
A(s,i)

ν are complex amplitudes, to be determined by imposing
the following boundary conditions at the interfaces (continuity
of the tangential components of E and H at the interfaces):∑

ν,s

A(s,g)
ν Y(s,g) [x,λν] =

∑
ν,s

A(s,v)
ν Y(s,v) [x,λν] , (3a)

∑
ν,s

A(s,m)
ν Y(s,m)[x,λν]e−iλ(s,m)

ν d

=
∑
ν,s

A(s,g)
ν Y(s,g)[x,λν]e−iλ

(s,g)
ν d , (3b)

where we have dropped the superscript for the eigenvalues
argument of the eigenvectors because they are the same as the
eigenvectors. Using properties of the eigenvectors (see below)
it is possible to derive the A(s,v)

ν in terms of the A(s,m)
ν or vice

versa, and then extract the scattering operators of the grating.
The expressions for the eigenvectors and the corresponding

eigenvalues play a central role in our derivation. In the
following we will focus on the evaluation of these quantities for
the grating region (i = g). The results will be also valid for the
bulk and vacuum homogeneous regions. For this one simply
needs to take the limit of no modulation [ε(x; ω) = ε(ω) and
μ(x; ω) = μ(ω)].

II. NON-SELF-ADJOINT EIGENVALUE PROBLEM

In this section we give the mathematical details on how to
solve Maxwell’s equations in a 1D modulated magnetodielec-
tric region. The modulation is lamellar along the x direction
(the electric permittivity and the magnetic permeability mod-
ulated along that direction), and the grating is invariant along
the y direction. For the purposes of finding the eigenmodes in
the grating region, we assume that the system is also invariant
along the z direction [22,23]. Using the invariance in y, it
is possible to write Maxwell’s equations ∇ × E − iωμH = 0
and ∇ × H + iωεE = 0 in the following form:

∂zEx = −∂x

(
ky

ωε
Hx

)
+

[
∂x

1

iωε
∂x − iωμ

]
Hy, (4a)

∂zEy = − k̃2

iωε
Hx + ky

ωε
∂xHy, (4b)

∂zHx = ∂x

(
ky

ωμ
Ex

)
−

[
∂x

1

iωμ
∂x − iωμ

]
Ey, (4c)

∂zHy = k̃2

iωμ
Ex − ky

ωμ
∂xEy, (4d)

where we already eliminated the z component of the electric

and the magnetic fields. For the sake of simplicity we will
also be measuring all frequencies as wave vectors, so that
ω/c → ω.

The previous system of equations can be solved by
separation of variables, by writing⎛

⎜⎝
Ex (x,z)
Ey (x,z)
Hx (x,z)
Hy (x,z)

⎞
⎟⎠ =

⎛
⎜⎝

Ex [x,λ]
Ey [x,λ]
Hx [x,λ]
Hy [x,λ]

⎞
⎟⎠eiλz ≡ Y [x,λ] eiλz, (5)
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where Y[x,λ] satisfies

λY[x,λ]

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 − ∂x

i

ky

ωε
−[∂x

1
ωε

∂x + ωμ]

0 0 k̃2

ωε

ky

ωε

∂x

i

∂x

i

ky

ωμ
[∂x

1
ωμ

∂x + ωε] 0 0

− k̃2

ωμ
− ky

ωμ

∂x

i
0 0

⎞
⎟⎟⎟⎟⎟⎠

×Y[x,λ], (6)

which is a eigenvalue equation for the eigenvector Y with
eigenvalues λ. Here, k̃2 = k2 − k2

z and k2 = μεω2, and for
simplicity we have omitted the spatial and frequency depen-
dency of the permittivity and permeability functions.

The 4 × 4 matrix equation (6) can be easily transformed
into a 2 × 2 second-order differential equation either in the
E or H components only. As a further simplification we
decompose the fields in two independent polarizations. We
will define “e” or “h” polarizations, for which the x component
of the electric or magnetic field vanishes, respectively (i.e.,
Ee

x = 0 and Hh
x = 0). Using this decomposition it is possible

to show that the 2 × 2 matrix equation decouples into two
one-dimensional second-order (in general non-self-adjoint)
differential equations for the y components of the fields;
namely,[

σ (s) (x) ∂x

1

σ (s) (x)
∂x + k̃2 (x)

]
U (s) [x,λ] = λ2U (s) [x,λ] ,

(7)

where s = e,h, σ (e)(x) = μ(x), σ (h)(x) = ε(x), U (e) = E(e)
y ,

and U (h) = H (h)
y . The corresponding eigenvalue λ will there-

fore also depend on the polarization s.
Given Eq. (7), from Maxwell’s equations we get [23]

J (s) [x,λ] = δ(s)

iλσ (s) (x)

ky

ω
∂xU (s) [x,λ] , (8)

where δ(e) = −1, δ(h) = 1, J (e) = H (e)
y , and J (h) = E(h)

y . Solv-
ing (7) and using the solutions in Eq. (8) one can therefore
find the y components of the eigenvector Y, and from them,
using again Maxwell’s equations, the x components, given
by (

Ex

Hx

)
= i

k̃2

(
ky∂x iλμω

−iλεω ky∂x

)(
Ey

Hy

)
. (9)

Finally, one can write the eigenvectors for the two polariza-
tions:

Y(e) [x,λ] =

⎛
⎜⎜⎜⎜⎜⎝

0

U (e) [x,λ]
λ2+k2

y

ωλ

U (e)[x,λ]
μ(x)

− ky

ωλ

∂xU (e)[x,λ]
iμ(x)

⎞
⎟⎟⎟⎟⎟⎠,

Y(h) [x,λ] =

⎛
⎜⎜⎜⎜⎝

− λ2+k2
y

ωλ

U (h)[x,λ]
ε(x)

ky

ωλ

∂xU (h)[x,λ]
iε(x)

0

U (h) [x,λ]

⎞
⎟⎟⎟⎟⎠. (10)

The matrix differential operator in the right-hand side
(rhs) of Eq. (6) is clearly not Hermitian. Therefore, the
eigenvalue problem (6) is non-self-adjoint and the eigenvalues
λ are in general complex [20,21]. Note that, since the matrix
is nonsymmetric, this remains true even if we consider a
nondissipative material. The existence of such complex values
is associated with the presence of evanescent fields in the
structure [25].

Following the theory of non-self-adjoint differential equa-
tions [20,21], one also needs to find the adjoint eigenvectors,
which are biorthogonal to the eigenvectors in Eq. (10), in
order to completely characterize the mathematical description.
Indicating them with Y[x,λ], one can show that they are
solutions to

λY [x,λ] =

⎛
⎜⎜⎜⎜⎜⎝

0 0 ky

ωμ∗
∂x

i
− k̃∗2

ωμ∗

0 0 [∂x
1

ωμ∗ ∂x + ωε∗] − ∂x

i

ky

ωμ∗

− ky

ωε∗
∂x

i
k̃∗2

ωε∗ 0 0

−[∂x
1

ωε∗ ∂x + ωμ∗] ∂x

i

ky

ωε∗ 0 0

⎞
⎟⎟⎟⎟⎟⎠Y[x,λ]. (11)

The two eigenvalue problems (6) and (11) have the same eigenvalue spectrum [20,21]. One can find the adjoint eigenvectors
employing the same strategy used above. One gets

Y
(e)

[x,λ] =

⎛
⎜⎜⎜⎜⎝

ky

λ2+k2
y

∂xV (e)[x,λ]
iμ∗(x)

V (e)[x,λ]
μ∗(x)

ωλ
λ2+k2

y
V (e) [x,λ]

0

⎞
⎟⎟⎟⎟⎠, Y

(h)
[x,λ] =

⎛
⎜⎜⎜⎜⎜⎝

− ωλ
λ2+k2

y
V (h) [x,λ]

0
ky

λ2+k2
y

∂xV (h)[x,λ]
iε∗(x)

V (h)[x,λ]
ε∗(x)

⎞
⎟⎟⎟⎟⎟⎠, (12)

where the function V (s)[x,λ] satisfies the differential equation[
[σ (s)(x)]∗∂x

1

[σ (s)(x)]∗
∂x + k̃∗2

]
V (s)[x,λ] = λ2V (s)[x,λ], (13)
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which is the adjoint equation of Eq. (7). The eigenvectors and their adjoint are biorthogonal; that is,

〈Y(s)
[λγ ]|Y(s ′)[λγ ′]〉 ≡

∫ p/2

−p/2
dx

Y
(s)

[x,λγ ]† · Y(s ′)[x,λγ ′]

σ (s)(x)
= δγ,γ ′δs,s ′ . (14)

In deriving the previous expression we used the fact that
the functions U and V satisfy themselves the biorthogonality
relation∫ p/2

−p/2
dx

V (s)∗[x,λγ ]U (s ′)[x,λγ ′]

σ (s)(x)
= 1

2
δγ,γ ′δs.s ′ . (15)

The choice of the normalization factor of V (s) and U (s) allows
us to have V (s)∗[x,λ] = U (s)[−x,λ], which will be particularly
handy for the forthcoming evaluations [23].

It is interesting to note that, from the symmetry in the
equations in (6) and (11), one can also show that the
biorthogonality relation (14) also has a physical meaning.
It is directly connected with the Poynting vector reciprocity
theorem, and therefore with the energy flux along the z

direction.

III. EIGENMODES AND EIGENVALUES

The approach described in the previous section re-
quires the solution of the second-order differential equa-
tion given in Eq. (7). Because of the periodicity of our

system the functions U (s) and their derivatives must satisfy
pseudoperiodic (Bloch-Floquet) boundary conditions; that
is, U (s)[p/2,λ] = eiα0pU (s)[−p/2,λ] and ∂xU (s)[p/2,λ] =
eiα0p∂xU (s)[−p/2,λ]. The previous requirements define a (in
general non-self-adjoint) scalar eigenvalue problem. In this
section we give the form of the eigenfunctions U (s)[x,λ] and
the corresponding eigenvalues λ, both for the grating and
homogeneous regions.

A. Eigenfunctions in grating region

Within the modulated region (−d < z < 0) of the 1D
lamellar grating, the permittivity and permeability functions
are

ε (x) =
{
ε1 for |x| � p1

2
ε2 for p1

2 � |x| � p

2 ,
(16a)

μ (x) =
{
μ1 for |x| � p1

2
μ2 for p1

2 � |x| � p

2 .
(16b)

Using these expressions in the differential equation (7) one can
find its solutions U (s)[x,λ] must have the following expression:

U (s) [x,λ] = C(s) (λ)

2

{
cos (α0p/2) ϕ(s)

e [x,λ] + i sin (α0p/2) ϕ(s)
o [x,λ]

}
, (17a)

where α0 describes the x component of the wave vector limited within the first Brillouin zone (−π/p � kx = α0 � π/p),
ϕ(s)

e [x,λ] = φ(s)
e [x,λ]/φ(s)

e [p/2,λ], and ϕ(s)
o [x,λ] = φ(s)

o [x,λ]/φ(s)
o [p/2,λ]. The functions φ(s)

e [x,λ] and φ(s)
o [x,λ], even and odd

in the variable x, respectively, are given by

φ(s)
e [x,λ] =

{
cos (γ1x) for |x| � p1

2

cos
(
γ1

p1

2

)
cos

(
γ2

[|x| − p1

2

]) − σ
(s)
2 γ1

σ
(s)
1 γ2

sin
(
γ1

p1

2

)
sin

(
γ2

[|x| − p1

2

])
for p1

2 � |x| � p

2 ,
(17b)

φ(s)
o [x,λ] =

⎧⎪⎨
⎪⎩

sin(γ1x)
γ1

for |x| � p1

2

sgn (x)
sin(γ1

p1
2 ) cos(γ2[|x|− p1

2 ])+ σ
(s)
2 γ1

σ
(s)
1 γ2

cos(γ1
p1
2 ) sin[γ2(|x|− p1

2 )]
γ1

for p1

2 � |x| � p

2 ,

(17c)

where γ 2
1 = ε1μ1ω

2 − (k2
z + λ2) and γ 2

2 = ε2μ2ω
2 − (k2

z + λ2). The normalization constant C(s)(λ) is given by

C(s) (λ) =
[

cos2 (α0p/2)
∫ p

2

0
dx

ϕ(s)
e [x,λ]2

σ (s)(x)
+ sin2 (α0p/2)

∫ p

2

0
dx

ϕ(s)
o [x,λ]2

σ (s) (x)

]− 1
2

. (17d)

We note that all the above functions, being even in γ1 and
γ2, do not depend on the definition (sign) of the square
root (i.e., do not contain any branch cut). We also note that
U (s)[x,λ] = U (s)[x, − λ]. The previous expressions (17) are
fully determined only once the eigenvalues λ are known.

B. Eigenvalues in grating region: general properties

Imposing the pseudoperiodic boundary conditions (on the
function and its derivative) it is possible to show that the
eigenvalues are the solution of the following transcendental

equation [23]:

0 = D(s)(λ) ≡ − cos(α0p) + cos(p1γ1) cos(p2γ2)

−T (s)(λ) sin(p1γ1) sin(p2γ2), (18)

where

T (s) (λ) = 1

2

(
σ

(s)
1 γ2

σ
(s)
2 γ1

+ σ
(s)
2 γ1

σ
(s)
1 γ2

)
. (19)
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Equation (18) clearly shows that the eigenvalues depend on
the frequency ω and the two wave vectors α0 and ky . We can
deduce the following properties, valid for both polarizations
(we will drop the superscript s):

(i) D(λ) is quadratic in λ and, therefore, if λ is a solution
then −λ is also a solution.

(ii) D(λ) is even in γi , which implies that the solution is not
affected by the sign of the square root.

(iii) D(λ) is even in α0 and ky , which implies that λ is an
even function of the two variables.

(iv) For complex frequencies ω = ζ , λ(ζ ) = −λ∗(−ζ ∗),
which implies that λ is a pure imaginary quantity for imaginary
frequencies ω = iξ .

(v) At high frequencies the ultraviolet transparency of all
materials (ε = μ = 1 for ω → ∞) implies that

λ(ω → ∞) = ±
√

ω2 −
[
k2
y +

(
α0 + 2πν

p

)2]
, (20)

with ν ∈ Z (see also Sec. V A).
(vi) The solutions of D(λ) = 0 form an infinite, numerable

set of complex numbers.

C. Special case: homogeneous media

The previous formalism also applies to the homogeneous
region of space. This particular limit is reached by imposing
σ1 = σ2 ≡ σ in the previous expressions, which implies γ1 =
γ2 ≡ γ . The corresponding transcendental equation becomes
then

D (λ) = cos (γp) − cos (α0p) = 0. (21)

There are two possible sets of solutions for γ ; namely,
γ = ±α0 + 2πν

p
≡ αν,±, where ν ∈ Z. The corresponding

eigenvalues are

λν = ±
√

εμω2 − (
k2
y + α2

ν,±
)
, (22)

and are the same for both polarizations s = e and s = h. From
a comparison with the usual grating theory each value of
ν corresponds to a specific Rayleigh order. However, it is
important to note that for the eigenvalues λ the set of solutions
with αν,+ gives an identical result as the set of solutions with
αν,−. This means that, for ν = 0,±1, ±2, . . . , one needs to
consider either one or the other. Instead, both sets of solutions
must be considered if we limit ν = 0, 1, 2, . . . (the ν = 0
solution must be counted only once). The eigenfunctions are

U (s) [x,λν] = (−1)ν

√
σ (s)

2p
e
i(|α0|+ 2πν

p
)x

, (23)

which are the usual plane-wave Rayleigh modes.

IV. SCATTERING OPERATORS

In this section we describe how to compute the reflection
matrices of the nanostructure within the modal approach. What
follows is similar to what is presented in Ref. [15] with the
important difference that now we have analytical expressions
for the eigenvectors. We introduce a transfer matrix that relates
the field amplitudes of the vacuum and bulk regions and
express the scattering operators of the grating in terms of the
transfer matrix.

A. Transfer matrix of grating

We start by splitting the complex eigenvalues λ into two
subsets: (a) eigenvalues with positive real part, with corre-
sponding eigenvectors called “right” eigenvectors, and (b)
eigenvalues with negative real part, with corresponding “left”
eigenvectors. Each subset is then ordered by the increasing
moduli of the eigenvalues—the smallest eigenvalue denoted
as λν=0 for the subset (a) [−λν=0 for subset (b)], λν=1 [−λν=1]
for the next eigenvalues, etc. Although this ordering is not
unique, the end results are not affected by our choice.

We define the fundamental 4 × ∞ matrices

Y−→
(i) = ( ∣∣Y(e)

[
λ

(e,i)
ν=0

]〉
,

∣∣Y(h)
[
λ

(h,i)
ν=0

]〉
,

∣∣Y(e)
[
λ

(e,i)
ν=1

]〉
,

∣∣Y(h)
[
λ

(h,i)
ν=1

]〉
, . . .

)
,

(24)
Y←−

(i) = ( ∣∣Y(e)
[−λ

(e,i)
ν=0

]〉
,

∣∣Y(h)
[−λ

(h,i)
ν=0

]〉
,

∣∣Y(e)
[−λ

(e,i)
ν=1

]〉
,

∣∣Y(h)
[−λ

(h,i)
ν=1

]〉
, . . .

)
,

where we dropped the x dependency of Y(s)[x,λ]. We recall that the index i indicates the region under consideration (i = v,g,m).
We also define the ∞ × 4 matrices formed by the adjoint eigenvectors

Y−→
(i)† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
Y

(e)[
λ

(e,i)
ν=0

]∣∣〈
Y

(h)[
λ

(h,i)
ν=0

]∣∣〈
Y

(e)[
λ

(e,i)
ν=1

]∣∣〈
Y

(h)[
λ

(h,i)
ν=1

]∣∣
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Y←−
(i)† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
Y

(e)[−λ
(e,i)
ν=0

]∣∣〈
Y

(h)[−λ
(h,i)
ν=0

]∣∣〈
Y

(e)[−λ
(e,i)
ν=1

]∣∣〈
Y

(h)[−λ
(h,i)
ν=1

]∣∣
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Using the scalar product defined in Eq. (14) we have Y−→←−
(i)† · Y−→←−

(i) = I and Y←−−→
(i)† · Y−→←−

(i) = 0. Let us define also the diagonal

propagation matrices

P−→
(i)(z) = diag

[
eiλ

(e,i)
ν=0z,eiλ

(h,i)
ν=0 z, . . .

]
, P←−

(i)(z) = diag
[
e−iλ

(e,i)
ν=0z,e−iλ

(h,i)
ν=0 z, . . .

]
, (26)
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which clearly verify [P−→←−
(i)(z)]−1 = P←−−→

(z) = P−→←−
(−z). Using the

previous definitions, the field in Eq. (2) can be written as

F(i)(x,z) = (Y←−
(i),Y−→

(i)) ·
(P (i)

←− 0
0 P (i)

−→

)
·
(

A←−
(i)

A−→
(i)

)
, (27)

where A−→←−
(i) is a column vector formed by the amplitudes A(s,i)

ν

in Eq. (2).
By applying the boundary conditions (3), one gets the

following relation between the amplitude coefficients:(
Ã←−

(m)

Ã−→
(m)

)
= � ·

(
A←−

(v)

A−→
(v)

)
, (28)

where we have defined the vectors Ã−→←−
(m) as the field amplitudes

in the bulk media multiplied by the corresponding phase
factors e−iλ(s,m)

ν d ; that is, the field amplitudes at the bulk-grating
interface (z = −d). The grating transfer matrix � is a 2 × 2
block matrix, with each of the blocks defined as

�11 = Y←−
(m)† · G (d) · Y←−

(v), (29a)

�12 = Y←−
(m)† · G (d) · Y−→

(v), (29b)

�21 = Y−→
(m)† · G (d) · Y←−

(v), (29c)

�22 = Y−→
(m)† · G (d) · Y−→

(v), (29d)

where the “grating” operator G(d) is

G (d) = Y←−
(g) · P←−

(g) (−d) · Y←−
(g)† + Y−→

(g) · P−→
(g) (−d) · Y−→

(g)†

=
∑
ν,s

∣∣Y(s) [
λ(s,g)

ν

]〉 〈
Y

(s)[
λ(s,g)

ν

]∣∣e−iλ
(s,g)
ν d

+ (
λ(s,g)

ν → −λ(s,g)
ν

)
≡ G(e) (d) + G(h) (d) , (30)

Thus, the operator G(d) is a decomposition in function of the
polarization as well as the right and left eigenvectors. The grat-
ing operator describes the propagation of the electromagnetic
field through the grating, and it is directly related to the Green
tensor of the electromagnetic field in the modulated region.

Once we have obtained the theta matrices we can get
immediately the scattering operators:

R←− = −�−1
22 · �21, (31a)

R−→ = �12 · �−1
22 , (31b)

T←− = �11 − �12 · �−1
22 · �21, (31c)

T−→ = �−1
22 . (31d)

The logic behind the previous expressions is simple: R←− is the

matrix that gives the field amplitude A−→
(v) in terms of A←−

(v).

Similarly, T←− connects Ã←−
(m) with A←−

(v), etc. As one can see, the
derivation of the reflection and transmission operators requires
the inversion of the matrix �22, which is called the pivotal
matrix [23]. This matrix contains important information about
the scattering properties of the grating. Indeed, the zeros of its
determinant are connected with the resonances of the scattering

operators. A simple check of this property can be found in the
next section, where the resonances are the surface plasmons
for a planar metal-dielectric interface. Despite being formally
simple, the inversion of this matrix may pose numerical
problems because the matrix is sparse, can be singular (ill
conditioned), and may lead to numerical instabilities. We
will see in the last section how one can skirt this problem
when computing the Casimir energy. As a last remark let
us notice that, from the properties of the eigenvalues and of
the eigenfunctions, it follows immediately that all scattering
operators are symmetric in α0 and ky . This information will
simplify the calculation of the Casimir interaction at the end
of this paper.

B. Special case: planar interface

To validate the previous approach and clarify how the actual
calculation works, let us consider the simple case of a planar
interface between two homogeneous media (“m” and “v”).
In this case we should recover the expression for the Fresnel
reflection amplitudes in the e and h polarization basis. For
d = 0 the operator G becomes the identity, simplifying the
expression of the theta matrices (29), which become block
matrices, with each block having a dimension 2 × 2. Using
the expressions for the eigenvalues (22) and eigenfunctions
(23) in the homogeneous regions, we obtain all the elements
of the pivotal matrix:

[
�

(ee)
22

]
γ ν

=
√

μ(m)μ(v)

2

(
1

μ(m)
+ 1

μ(v)

λ(m)
ν

λ
(v)
ν

[
λ(v)

ν

]2 + k2
z[

λ
(m)
ν

]2 + k2
z

)
δγ ν,

[
�

(hh)
22

]
γ ν

=
√

ε(m)ε(v)

2

(
1

ε(m)
+ 1

ε(v)

λ(m)
ν

λ
(v)
ν

[
λ(v)

ν

]2 + k2
z[

λ
(m)
ν

]2 + k2
z

)
δγ ν,

[
�

(eh)
22

]
γ ν

=
√

μ(m)ε(v)

2

kzαν

μ(m)ε(v)ωλ
(v)
ν

(
1−

[
λ(v)

ν

]2 + k2
z[

λ
(m)
ν

]2 + k2
z

)
δγ ν,

[
�

(he)
22

]
γ ν

= −
√

ε(m)μ(v)

2

kzαν

ε(m)μ(v)ωλv
ν

(
1−

[
λ(v)

ν

]2 + k2
z[

λ
(m)
ν

]2 + k2
z

)
δγ ν.

(32)

As before, αν = α0 + 2πν/p. The other matrices can be im-
mediately derived from the previous expression by accordingly
changing the sign of λ. For example for �

γν

12 , λm → −λm while
for �

γν

21 , λv → −λv , etc. This also means that all � matrices
are block diagonal with each block being 2 × 2 and, therefore,
the same occurs for the reflection operator. In the special
case ky = 0 the (e,h) polarization basis coincides with the
usual transverse electric (TE) and transverse magnetic (TM)
polarization basis. In this case the blocks and therefore the
reflection operators are diagonal and, as an example, we have

R←− = −

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
μvλm−μmλv

ν

μvλm
ν +μmλv

ν
0

0 εvλm
ν −εmλv

ν

εvλm
ν +μmλv

ν

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .

rTE
kx=αν,ky=0

0

0 rTM
kx=αν,ky=0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (33)

where rTE and rTM are the usual Fresnel reflection amplitudes.

V. EIGENVALUES: ANALYTICS AND NUMERICS

It should be clear from the previous section that the key
element to calculate the scattering operators are the solutions
of the transcendental equation. In order to study them both ana-
lytically and numerically, it is convenient to define the variable
η ≡ γ 2

1 , write γ 2
2 = η + [μ2(ω)ε2(ω) − μ1(ω)ε1(ω)]ω2, and

rewrite the transcendental equation in terms of the variable η

as D̃(η) = 0. The advantage of doing this is that, in contrast
to Eq. (18), this new equation does not depend on ky , thereby
reducing the dimensionality of the space where the solutions
are defined. Once we solve for η, we obtain the original
eigenvalues λ using λ2 = μ1(ω)ε1(ω)ω2 − (k2

y + η).
In general, the solutions of the transcendental equation

D̃(η) = 0 must be searched for numerically. This task is
complicated by the fact that, for real physical frequencies,
they are complex numbers. However, since the Casimir free
energy (1) is given as a sum over the pure imaginary Matsubara
frequencies, in this section we consider the solutions of the
transcendental equation already at imaginary frequencies;
namely,

0 = D̃(s) (η)

= − cos(α0p) + cos(p1
√

η)

× cos(p2

√
η − [ε (iξ ) − 1] ξ 2)

−1

2

(√
η − [ε (iξ ) − 1] ξ 2

σ
(s)
2 (iξ )

√
η

+ σ
(s)
2 (iξ )

√
η√

η − [ε (iξ ) − 1] ξ 2

)

× sin(p1
√

η) sin(p2

√
η − [ε(iξ ) − 1]ξ 2), (34)

where, for simplicity, we hereafter specialize to the case
where one of the media is vacuum (ε1,μ1 = 1) and the other
has no magnetic activity (ε2 = ε, μ2 = 1). Our derivations
and discussions below can be generalized to other more
generic grating configurations. We also recall that, in the
previous expression, σ

(e)
2 (iξ ) = 1 and σ

(h)
2 (iξ ) = ε(iξ ). One

can analytically show that, on the imaginary frequency
axis ω = iξ , the solutions for η = η[ξ,α0] are nonnegative
real numbers. The eigenvalues are then purely imaginary
quantities, λ = ±i(ξ 2 + k2

y + η)1/2. Equation (34) is the main
equation in this work, which we shall study in detail below.

A. Drude and plasma models for metallic gratings

Depending on the range of frequency, the dielectric model,
and the polarization it is possible to find approximate analytical
expressions for the eigenvalues in some limiting cases. For
simplicity, we will consider here only two model dielectric
functions of metals; namely, the Drude (εD) and plasma (εp)

permittivities:

εD (iξ ) = 1 + ω2
p

ξ (ξ + γ )
, εp (iξ ) = 1 + ω2

p

ξ 2
, (35)

where ωp is the plasma frequency and γ is the dissipation
rate. In the following we study the high- and low-frequency
behavior of the eigenvalues for both permittivity models.

As we stated in Sec. II, for ξ � ωp the ultraviolet
transparency of metals implies that the Drude and plasma
models share the same set of eigenvalues, independent of
polarization. The large eigenvalues (η � ω2

p) have the form

η (ξ → ∞) = (α0 + 2πν/p)2 , (36)

with ν ∈ Z, while for η � ω2
p their values must be found

numerically.
At low frequencies the eigenvalues depend on polarization,

and they are different for the Drude and plasma models. We
will call “low frequency” different regions for each of these
models: for the Drude mode it corresponds to ξ  γ , while
for the plasma model it corresponds to ξ  ωp. In the region
γ  ξ  ωp the solutions for the two polarizations behave
differently, but the plasma and the Drude model give similar
expressions. In the region ξ  γ , absent in the plasma model,
the Drude model describes a regime where the electromagnetic
field undergoes a diffusive dynamics [26,27]. We now consider
the two polarizations separately.

1. s = h polarization

In the limit ξ  ωp, assuming that η[ξ,α0] is constant
or goes to zero slower than [ε(iξ ) − 1]ξ 2, the s = h value
of the term in the big parentheses in the fourth line of
Eq. (34) is much larger than one. Then one has to look for
solutions of sin(p1

√
η) sin{p2

√
η − [ε(iξ ) − 1]ξ 2} = 0. Two

sets of solutions are possible: the first,

η
(h)
1,ν(ξ  ωp) =

(
νπ

p1

)2

(37)

(ν ∈ Z and ν �= 0), does not depend on the permittivity model
and describes modes vibrating within the grooves (see Fig. 3);
the second one is given by

η
(h)
2,ν(ξ  ωp) =

⎧⎨
⎩

(
νπ
p2

)2 + ω2
p (plasma)(

νπ
p2

)2 + ξω2
p

ξ+γ
(Drude),

(38)

and describes modes vibrating inside the teeth (see Fig. 3). The
difference between the two dielectric models is evident in the
limit ξ  γ . For the plasma model all the solutions are always
distinct. On the contrary, for the Drude model degeneracies
are possible: for certain frequencies ξ there are values of ν

that make the eigenvalues of Eq. (37) identical to the ones of
Eq. (38), and in this case an alternative approach must be used
to search for the solutions (see the end of this section).

For η[ξ,α0] going to zero faster than [ε(iξ ) − 1]ξ 2 for
ξ → 0, one can no longer neglect the terms in the second
and third lines of Eq. (34). In this case, for ξ  ωp in the
plasma model one can approximate η − [ε(iξ ) − 1]ξ 2 ≈ −ω2

p

and expand up to the second order in η the terms cos(p1
√

η)
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and sin(p1
√

η). Solving the resulting equation one gets for the
smallest eigenvalue

η
(h)
ν=0,plasma ≈ 2ξ 2 cosh(p2ωp) − cos(α0p)

ωpp1 sinh(p2ωp)
, (39)

which describes a mode resulting from the coupling of
surface plasmons living on the walls of the grooves. For
the Drude model η − [ε(iξ ) − 1]ξ 2 also goes to zero for
ξ → 0. Expanding to the second order in η the corresponding
trigonometric functions and solving for η one gets

η
(h)
ν=0,Drude ≈ 2ξγ

{
[1 − cos (α0p)]

ω2
pp1p2

+ 1

2

p2

p1

ξ

γ

}
. (40)

Hence, η
(h)
0,plasma goes quadratically to zero with the frequency,

while the corresponding power law of η
(h)
0,Drude strongly depends

on the value of α0. This last feature will be relevant in the
numerical evaluations below, in particular in the calculation of
the zero-frequency limit of the reflection operators.

2. s = e polarization

Let us consider now the low-frequency behavior of the
eigenvalues in the case of e polarization. For the plasma
model one can see that Eq. (34) no longer depends on the
frequency, and in consequence the corresponding eigenvalues
are frequency independent and coincide with their high-
frequency limit. The eigenvalues must be found numerically;
the large ones being approximately equal to Eq. (36). For the
Drude model Eq. (34) becomes identical to the one for vacuum.
The solutions are then

η
(e)
Drude (ξ  γ ) =

{
α2

0 for ν = 0( ± α0 + 2πν
p

)2
for ν �= 0.

(41)

In this case degeneracies happen at the center (α0 = 0) and at
the border (α0 = π/p) of the Brillouin zone [28] (see Sec. VII
for the impact of degeneracies on the calculation of the Casimir
interaction). Expanding the transcendental equation (34) to
second order in η around the solutions (41) and solving for η

one gets

η
(e)
Drude =

⎧⎪⎪⎨
⎪⎪⎩

α2
0 − 2D̃(e)(η)

∂ηD̃(e)(η)−
√

[∂ηD̃(e)(η)]2−4D̃(e)(η)∂2
η D̃(e)(η)

∣∣∣∣
η=α2

0

for ν = 0

(±α0 + 2πν
p

)2 − 2D̃(e)(η)

∂ηD̃(e)(η)∓
√

[∂ηD̃(e)(η)]2−4D̃(e)(η)∂2
η D̃

(e)

η2 (η)

∣∣∣∣
η=(±α0+2πν/p)2

for ν �= 0.

(42)

It is possible to show that, in the limit α0 → 0,

η
(e)
ν=0,Drude ≈ α2

0 + p2

p

ξ

γ
. (43)

B. Numerical solution for eigenvalues

We solved numerically the transcendental equation (34)
using MATHEMATICA, employing as seeds for the roots of
D̃(s)(η) = 0 the asymptotic analytical expressions for the
eigenvalues described above. Hereafter we will focus on
the results for the Drude model, postponing the results for
the plasma model and their comparison for future work. In
Fig. 2 we show the numerical solutions for specific values of
the geometrical parameters of the grating. As seen in the figure,
all s = e eigenvalues bend down at low frequencies, while only
the s = h eigenvalues obtained from the seeds (38) show the
same trend. This behavior is due to the dissipative nature of
the metal. For the h polarization the eigenvalues obtained from
the seeds (37) change smoothly and they cross the other set of
h eigenvalues for some values of ξ , showing degeneracies. At
low frequency, both sets of eigenvalues of the h polarization
are almost insensitive to the value of α0, while this parameter
becomes relevant at large imaginary frequency. In contrast, the
eigenvalues of the e polarization are very sensitive to the value
of α0. In Figs. 3 and 4 we plot the spatial profile of the eigen-
modes corresponding to the previously discussed eigenvalues.

VI. DETAILS OF CALCULATION OF MATRIX ELEMENTS

Now that we have described the calculation of the eigen-
values and the eigenvectors, let us proceed to the computation
of the theta matrices (29). All these matrices involved in the

calculation of the Casimir free energy have a similar form;
namely, a collection of 2 × 2 blocks with elements coupling
the two polarizations:

[�ij ](ss ′)
γ ν = 〈Y(s,m)

[(−1)iλγ ]|G(d)|Y(s ′,v)[(−1)jλν]〉. (44)

From the expression for the grating operator (30) and of
the eigenvectors, it follows that one of the key elements
of our approach is the calculation of the overlap between
the eigenvectors describing the field in the grating region
with the eigenvectors characterizing the field in the two

homogeneous regions; namely, 〈Y(s)
[λ(s,m)

ν ]|Y(s ′)[λ(s ′,g)
ν ′ ]〉 and

〈Y(s)
[λ(s,g)

ν ]|Y(s ′)[λ(s ′,v)
ν ′ ]〉, and eventually the explicit calcula-

tion of the following integrals:∫ p

2

− p

2

dx
U (s) [x,λ]

σ (s) (x)
e−iαx,

∫ p

2

− p

2

dx
∂xU (s) [x,λ]

σ (s) (x)
e−iαx .

(45)
It is interesting to note that since U (s)[x,λ], defined in
(17a), is a combination of trigonometric functions oscillating
with frequencies γ1 and γ2, the above integrals are large
when α = ±γi (i = 1,2). Physically speaking this relation
describes the x-component momentum matching between the
electromagnetic wave coming from the homogeneous regions
and the wave propagating in the grating region. The above
integrals can be done analytically, but the resulting expressions
are long and cumbersome, so we do not report them here.

It is interesting to consider some special cases. For instance,
for ky = 0 the scalar products between vectors with different
polarizations vanish. As a consequence the polarizations
decouple and one can show that the blocks of the theta matrices
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become diagonal. Under a transformation that generates an
even number of permutations of rows and columns, the
transfer matrix can be written in a block-diagonal form as

�(ky = 0) =
(

�(ee) 0
0 �(hh)

)
. (46)

From Eqs. (31) it immediately follows that all scattering
operators are 2 × 2 block diagonal. In the case where the
Drude model is used to describe the optical properties of
the metallic grating, some interesting information can be

obtained for the reflection operator in the limit ξ → 0 for the
e polarization. In this limit U (e) = U (e)

hom because the eigenval-
ues (41) are identical to the ones of vacuum (i.e., the grating
modes match the ones of the vacuum region), and therefore the
electromagnetic field effectively does not see the grating mod-
ulation. The properties of the e polarization allow us to directly
connect this result to the Bohr-van Leeuwen theorem [29,30].

Decomposing the operator G over the two polarizations, in
the limit ξ → 0 and arbitrary ky we can write

�γν(ξ = 0) =
( 〈

Y
(e)[

λ(e,m)
γ

]∣∣G(h)
∣∣Y(e)

[
λ(e,v)

ν

]〉 〈
Y

(e)[
λ(e,m)

γ

]∣∣G(h)
∣∣Y(h)

[
λ(h,v

ν

]〉
〈
Y

(h)[
λ(h,m)

γ

]∣∣G(h)
∣∣Y(e)

[
λ(e,v)

ν

]〉 〈
Y

(h)[
λ(h,m)

γ

]∣∣G(h)
∣∣Y(h)

[
λ(h,v)

ν

]〉
)

+
(

δλγ ,λν
e−sgn[λγ ]d

√
k2
z +α2

ν 0
0 0

)
, (47)
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FIG. 2. (Color online) Numerical solution of the transcendental
equation (34) for the Drude model. Only the lowest eleven eigenvalues
are shown. (a) s = h polarization. The dotted line corresponds to the
smallest eigenvalue η

(h)
ν=0. Solid lines are the eigenvalues obtained

using as seeds the expression (37) [ν going from 1 (bottom curve)
to 4 (top curve)]. Dashed lines are the eigenvalues obtained using as
seeds the expression (38) [ν going from 1 (bottom curve) to 2 (top
curve)]. (b) s = e polarization. The dotted line corresponds to the
smallest eigenvalue η

(e)
ν=0. Solid and dashed lines are the eigenvalues

obtained using as seeds the expressions (41) for the two possible signs
[ν going from 1 (bottom curve) to 4 (top curve)]. Dashed lines are
the eigenvalues obtained using as seeds the expression (38) [ν going
from 1 (bottom curve) to 3 (top curve)]. Parameters are p1 = 160 nm,
p2 = 90 nm, and α0 = 0.5π/p. The optical parameters chosen for
these plots are ωp = 8.39 eV, γ = 0.043 eV; the general structure of
the curves remains unchanged for other choices of Drude parameters.

where the first term corresponds to the h part of the operator
G and the second one to the e part. Here, λγ and λν can be
positive and negative.

If we now consider in addition the limit ky → 0, we can
deduce the following properties for the reflection matrix.
Since �

(ee)
ij = �

(eh)
ij = �

(he)
ij = 0 for i �= j we immediately
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FIG. 3. (Color online) Spatial structure of electromagnetic modes
in grating region in units of plasma wavelength λp = 2π/ωp ,
for ky = 0, α0 = 0.2π/p for second Matsubara frequency ξ =
4πkBT /(h̄c) at T = 300 K. The curves represent the modes with
ν = 2, corresponding to the two seeds in Eqs. (37) and (38) and to
the two seeds (± solutions) in Eq. (41). Our choice ky = 0 implies that
the e and h polarizations decouple, and that Ex and Hy depend only on
the h polarization, while Ey and Hx depend only on the e polarization.
For the h polarization two categories of modes exist: the first mainly
vibrates within the grooves, and the second mainly vibrates within the
teeth (this is particularly clear for Hy). In agreement with Maxwell’s
equations, the component of the electric field along the modulation
direction is discontinuous at the groove walls while the remaining
ones are all continuous. The numerical values inside the plots indicate
the effective refractive index at imaginary frequency, neff (iξ ) ≡ kz/ξ ,
for the corresponding mode (the value on the left corresponds to
the full-line mode, the one on the right to the dashed-line mode).
The Drude and grating parameters are the same as in the previous
figure.
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have that

R←−
(ee)(ξ = 0,ky = 0) = 0,

(48)
R←−

(eh)(ξ = 0,ky = 0) = R←−
(e,h)(ξ = 0,ky = 0) = 0.

The only part of the reflection operator which does not vanish
is connected with the h polarization:

R←−
(hh)(ξ = 0,ky = 0) = −[

�
(hh)
22

]−1
�

(hh)
21 . (49)

A rather lengthy calculation also allows us to obtain some
properties of the previous operator matrix elements. We only
report the most relevant one for the first Brillouin zone (i.e., in
the limit α0p/π  1):

R←−
(hh)
00 (ξ = 0,ky = 0) − 1 ∝ −α0. (50)

The solid lines in Fig. 5 are the numerically computed
matrix elements of the reflection operator of the metallic
grating corresponding to the zeroth-order reflection (γ = ν =
0) for the first seven Matsubara frequencies, shown only
for ky = 0. The Drude model was used with ωp = 8.39 eV,
γ = 0.043 eV, while the grating geometry is p1 = 160 nm,
p2 = 90 nm, and d = 216 nm. The behavior of these reflection
amplitudes is in agreement with the predictions made above.
The dashed lines show the corresponding matrix elements of
a flat metallic surface (Fresnel coefficients), using the same
optical parameters. From the figure it is clear that the grating
is less specularly reflecting than a flat surface. At large wave
vectors the grating reflection amplitudes behave differently
with respect to the plane surface: while for the plane they
asymptotically reach a horizontal line, for the grating they
have a finite negative slope. However, at small wave vectors
the behavior of the reflection amplitudes for the grating and
for the flat surface is similar (except for the zeroth Matsubara

S
et 1

Set 2
Set +

Set -

Mi Mn ax(arbitrary units)

FIG. 4. (Color online) Density plot of the intensity of the electro-
magnetic field within the modulated region. Upper box corresponds
to |Ex |2 and lower box to |Ey |2. In each of the plots the horizontal
axis is the modulation x direction and the vertical axis is the invariant
z direction. The parameters are the same as in the previous figure and,
therefore, |E2

x | depends only on the h polarization [Eqs. (37) and(38)]
while |E2

y | depends only on the e polarization [Eq. (41)]. The first
five modes for each polarization and for each set of eigenvalues
are represented. There is only one zero mode per polarization (see
discussion in the text). For the parameters chosen here the zero mode
is almost constant for the h polarization.
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FIG. 5. (Color online) Matrix elements of reflection operator
corresponding to zeroth-order reflection. The full lines are the
result for the grating for the first seven Matsubara frequencies.
The dashed lines show the equivalent matrix elements for the flat
surface (Fresnel coefficients). (a) Zeroth-order reflection coefficients
for the h polarization. The first seven Matsubara frequencies are
shown (zeroth to the sixth from the top to the bottom). (b) Zeroth-order
reflection coefficients for the e polarization. Once again, the first seven
Matsubara frequencies are shown. The zeroth-frequency term is zero,
while the other ones (first to the sixth from the bottom to the top)
decrease in absolute value. The depth of the grating is d = 216 nm,
and the remaining parameters are the same as in Fig. 2.

hh reflection amplitude). This suggests that, in this limit,
the grating may be described using an effective medium
approximation, in which the reflection matrices of the grating
are approximated by Fresnel coefficients for a homogeneous
planar interface with an effective permittivity εeff(ω). A fit
of the numerical results for the grating in Fig. 5 for the h

and e polarization to Fresnel coefficients gives an effective
Drude permittivity with a reduction of the plasma frequency
of about 7.8 times for h polarization and 2.2 times for the e

polarization. The effective dissipation rate decreases more for
the e polarization than for the h polarization (1.4 times against
1.2).

Finally, let us emphasize that our method allows us to
deal with the zero Matsubara frequency (ξl=0 = 0) analyti-
cally, without resorting to any limiting procedure, such as
approximating ξl=0 by a large-wavelength mode (as used in,
for example, Ref. [15]). It also avoids problems related to
the Gibbs phenomenon which complicates the calculation,
especially for metallic structures. This phenomenon refers to
the oscillations that occur when a piecewise discontinuous
function, such as our permittivity ε(x; ω), is approximated by
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a finite Fourier series. Its impact increases with the magnitude
of the discontinuity and, therefore, becomes a more serious
issue at low frequencies. Instead, the method described in
this paper deals with such a discontinuity exactly, eliminating
de facto all problems related to a Fourier decomposition of the
permittivity profile.

VII. CASIMIR INTERACTION

In this section we use our quasianalytical modal approach to
write down the Casimir free energy (1) between two vacuum-
separated, lamellar gratings facing each other. We discuss
how to generalize the formalism to nonlamellar gratings
and multilayered periodic structures. Finally, we numerically
compute the Casimir pressure between a flat gold plate parallel
to a gold grating and discuss the asymptotic behaviors at large
and small distances.

A. Two lamellar gratings

Let us consider two vacuum-separated lamellar 1D gratings.
The Casimir pressure between them can be obtained by taking
the a derivative of the Casimir free energy (1),

P (a) = − 4

β

∞′∑
l=0

∫ ∞

0
dky

∫ π/p

0
dα0

× ∂a ln det[1 − R←−
L · P−→

(v) (a) · R−→
R · P−→

(v) (a)],

(51)

where we have already performed the trace over the spatial
degrees of freedom and used the parity properties of the
reflection operators

R←−
L = − [

�L
22

]−1 · �L
21, R−→

R = �R
12 · [

�R
22

]−1
, (52)

and of P−→
(v)(a). As we discussed above, the calculation of

the reflection matrices requires the inversion of the pivotal
matrix, which can be an expensive and not accurate numerical
operation. It is however possible to avoid this inversion and
derive the Casimir free energy. Indeed, using (52) in Eq. (51)
we can write

ln det[1 − R←−
L · P−→

(v) · R−→
R · P−→

(v)]

= ln
det

[
�L

21 · P←−
(v)(−a) · �R

12 + �L
22 · P−→

(v)(−a) · �R
22

]
det

[
�L

22 · P (v)
−−→(−a) · �R

22

] ,

(53)

where the different theta matrices for the left (L) and right (R)
gratings can be obtained from Eq. (29); namely,

�L
21 = Y−→

(m)† · GL (dL) · Y←−
(v),

�L
22 = Y−→

(m)† · GL (dL) · Y−→
(v),

(54)
�R

12 = Y←−
(v)† · GR (dR) · Y−→

m),

�R
22 = Y−→

(v)† · GR (dR) · Y−→
(m),

where dL and dR are the depths of the left and right
gratings, respectively. The interpretation of Eq. (53) is par-
ticularly simple in terms of modes. Indeed, as we discussed

above, the determinant of the pivotal matrix gives the reso-
nance of the system, and hence det[�L

22 · P−→
(v)(−a) · �R

22] =
det[�L

22]det[P−→
(v)(−a)]det[�R

22] gives the resonances of the

two isolated gratings. The factor det[P−→
(v)(−a)] = ea

∑
ν λν

represents the contribution of the continuum of electromag-
netic vacuum modes hitting the gratings [9]. Similarly, the
determinant of �L

21 · P←−
(v)(−a) · �R

12 + �L
22 · P−→

(v)(−a) · �R
22

gives the coupled modes of the two gratings. Indeed, one
can show that this matrix is the pivotal matrix �

comp
22 of the

composite system formed by the left grating, the vacuum
region, and the right grating. This is particularly evident if
one writes it as follows:

�
comp
22 = Y−→

(m)† · GL (hL) · G(v) (a) · GR (hR) · Y−→
(m), (55)

where

G(v) (a) = Y←−
(v) · P←−

(v) (−a) · Y←−
(v)†

+Y−→
(v) · P−→

(v) (−a) · Y−→
(v)† (56)

is the vacuum (propagator) operator. In the limit a → ∞
(infinitely separated gratings) the second term in the numerator
of Eq. (53) vanishes, and hence we can write (51) as

P (a) = − 4

β

∞′∑
l=0

∫ ∞

0
dky

∫ π/p

0
dα0 ∂a ln

det
[
�

comp
22 (a)

]
det

[
�

comp
22 (a → ∞)

]
= 4

β

∞′∑
l=0

∫ ∞

0
dky

∫ π/p

0
dα0 ∂a ln det[T−→

comp]|aa→∞,

(57)

where we used the definition of the transmission operator in
terms of the pivotal matrix given in Eq. (31).

Before concluding this subsection let us discuss the impact
of mode degeneracy on the Casimir interaction. In the case
of two degenerate eigenvalues, new expressions for the
eigenfunctions U (s) must be found using standard techniques.
Although possible and not mathematically involved, this is
however of no use for the evaluation of the Casimir pressure.
Indeed, one can show that this will require the modification
of the integrand of the previous expression in a Lebesgue null
measure ensemble of points, without changing the final result.

B. Generalization to nonlamellar gratings

The simple physical reasoning behind the previous re-
sults allows us to generalize the calculation to multilayered
periodic structures and nonlamellar gratings, which can be
approximated, by slicing them, as multilayered periodic
structures of individual lamellar gratings [31,32]. Consider,
for example, two nonlamellar gratings facing each other and
separated by vacuum. The composite system is bounded by
two homogeneous bulk media mL and mR . The pivotal matrix
for the composite system is clearly given by

�
comp
22 = Y−→

(mL)† ·
( ∏

i

GL
i

)
· G(v) ·

( ∏
j

GR
j

)
· Y−→

(mR),

(58)
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where GL,R
i is the propagator for the ith lamellar slice of the

nonlamellar left or right grating.

C. Large-distance asymptotic expression

Despite the complexity of the previous expressions, it is
possible to derive a close expression for the Casimir free energy
between gratings in the asymptotic limit of large distances,
a → ∞. Since the operator P−→(a) is a diagonal matrix

with decreasing exponentials e−aλν as matrix elements, it
follows that, for any fixed Matsubara frequency, the eigenvalue
with ν = 0 is the one that gives the slowest decrease as a

grows. This value of ν corresponds to the zeroth order of
reflection in the standard Rayleigh formalism for scattering
from periodic structures. Therefore, at large distances we
can keep only contributions arising from the λ

(v)
ν=0 eigen-

value, and approximate 1 − R←−
L · P−→(a) · R−→

R · P−→(a) ≈ 1 −
[R←−

L]00 · [R−→
R]00 e−2κa , where κ = (ξ 2 + k2

y + α2
0)1/2. The

subscript 00 indicates that only the γ = ν = 0 block of the R
matrices is considered. For the same reason, at distances large
enough the dominant contributions to the Casimir free energy
comes from α0 ≈ 0 and ky ≈ 0. We know already that when
ky → 0 the e and h polarizations decouple, which implies that
the submatrices [R←−

L]00 and [R−→
R]00 become diagonal. Hence,

in this large-distance limit, we approximate the pressure as

P (a) ≈ − 4

β

∞′∑
l=0

∫ ∞

0
dky

∫ π/p

0
dα0

× ∂a

{
ln

[
1 − [R←−

L](ee)
00 [R−→

R](ee)
00 e−2κa

]
+ ln

[
1 − [R←−

L](hh)
00 [R−→

R](hh)
00 e−2κa

]}
, (59)

which is formally equivalent to the Lifshitz formula for parallel
planes. At large distances, the zeroth Matsubara frequency
(l = 0) dominates the above summation, which implies that
P (a) is proportional to −kBT a−3, as in the plane-plane
case. The proportionality factor depends on the value of the
reflection amplitudes in the limit ky ≈ 0 and α0 ≈ 0. For
metallic gratings described by the Drude model, we have
seen above [see (48) and (50)] that [R](ee)

00 (ξ = 0,ky = 0) = 0,
while [R](hh)

00 (ξ = 0,ky = 0,α0 → 0) = 1. Therefore, as for
Drude parallel plates, the prefactor is ζ (3)/(8π ).

D. Numerical results

In this subsection we will focus on the Casimir interaction
between a gold lamellar grating parallel to a gold flat surface.
In principle, our modal approach can treat this problem almost
fully analytically, requiring numerics only for finding the
roots of the transcendental equation (34) to determine the
eigenvalues for the grating region. However, from the practical
point of view, we are also forced to truncate the matrices
and the series to numerically evaluate integrals and to deal
with convergency issues. We address these issues in what
follows.

The size of the theta and scattering matrices is set by the
number of eigenvectors Nmax one keeps to describe the fields in
the homogeneous regions (equivalent to the Rayleigh orders).
This number will be always odd because we will truncate the

Rayleigh expansion symmetrically with respect to the zeroth
order. The corresponding matrices will be block matrices with
dimension (2Nmax) × (2Nmax) (the factor 2 comes from the
two polarizations). The expression of the grating operator
(30) is formally independent of the truncation order Nmax,
and the series defining it could be truncated at a different
value; say Mmax. Numerical studies show, however, that for
the reflection matrix the best convergency is obtained when
Mmax = Nmax. This can be physically understood from a argu-
ment of dimensionality matching between the Hilbert spaces
describing the field inside the grating and in the homogeneous
regions. This is particularly clear at high frequency where a
one-to-one correspondence between grating eigenvectors and
vacuum eigenvectors is required to satisfy the high-frequency
transparency. Our numerical studies show that, for our choice
of optical and geometrical parameters (plasma frequency
8.39 eV, dissipation rate 0.043 eV, p1 = 160 nm, p2 = 90 nm,
d = 216 nm) the first eleven modes (Mmax = Nmax = 11) for
the e and for h polarization are enough for the theta matrices
(and, hence, the reflection matrices) to converge for all values
of ξ , ky , and α0 relevant in the numerics. For our configuration,
higher modes would correspond to values much larger than the
plasma frequency, for which the metal is almost transparent
(see Fig. 2). Since the magnitude of the eigenvalues decreases
with the inverse of the grating parameters [see (37), (38), and
(41)], more (fewer) modes will be required for gratings with
larger (smaller) geometrical features.

The calculation of the Casimir pressure in Eq. (57) also
requires the evaluation of two integrals over wave vectors. The
integration is performed using a 30-points Gauss-Legendre
quadrature scheme for α0, and a 20-points Gauss-Laguerre
quadrature scheme for ky . Numerical checks show that, for
the zeroth Matsubara frequency, the agreement with a Monte
Carlo calculation is better that 1% for 100 nm � a � 5 μm,
and better that 3% for 5 μm � a � 10 μm. The agreement
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FIG. 6. (Color online) Casimir pressure between a metallic
grating and a metallic plane, computed using our quasianalytical
modal approach. At large separation the pressure tends towards
the value ζ (3)kBT /(8πa3) (dashed curve). At short separations the
pressure is ∝a−3 because of the finite grating conductivity. The
prefactor used for the dotted curve is the one for the plane-plane case
multiplied by the filling factor f = p2/p (see definition of Pfilling in
the text). The Drude parameters are ωp = 8.39 eV and γ = 0.043 eV.
The geometrical parameters of the grating are width of the grooves
p1 = 160 nm, width of the teeth p2 = 90 nm, and height d = 216 nm.
Temperature is set to T = 300 K.
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FIG. 7. (Color online) Plane-plane (dashed) and plane-grating
(solid) Casimir pressure normalized by Pfilling with the respective
filling factor (f = 1 for the plane-plane and f = 90/250 for the
plane-grating). The two vertical lines are located at distances
corresponding to the plasma wavelength (λp = 2π/ωp) and half of
the thermal wavelength [λT = h̄c/(2kBT )]. The transition from the
a−3 nonretarded behavior to the a−4 retarded behavior for the plane-
plane configuration occurs much faster than for the plane-grating
configuration. The large-distance a−3 thermal regime is, however,
not affected by the grating and starts roughly at the same point for
both configurations. Parameters are the same as in previous figures.

greatly improves for higher Matsubara frequencies. The
Matsubara series was truncated at 41 terms. At the distance of
a = 50 nm, the total result changes by less than 1% in going
from 37 to 41 Matsubara terms.

Figure 6 shows the result of the numerical evaluation of
the Casimir pressure obtained from Eq. (57). As a check of
our prediction we also show the large-distance asymptotic
expression discussed in the previous section (dashed line).
The dotted line represents the short distance plane-plane
asymptotic behavior multiplied by the filling factor (f =
p2/p) [8], Pfilling(a) ≡ −1.79f ωph̄cπ/(720a3). The good
agreement between the full line and the dotted line in Fig. 6
indicates that, at short distances, the plane-grating Casimir
pressure is substantially less than the plane-plane pressure
mainly due to geometrical effects.

Finally, we briefly address the influence of finite conductiv-
ity and temperature for Casimir interactions involving gratings.
In the plane-plane configuration the Casimir pressure goes
as a−3 for a  λp (nonretarded van der Waals regime), as
a−4 for λp  a  λT (retarded regime), and again as a−3

for a � λT (thermal regime), where λp = 2πc/ωp is the
plasma wavelength (≈147 nm in our case) and λT = h̄c/(kBT )
is the thermal wavelength (≈7 μm at T = 300 K). The
behavior at short distances can also be interpreted as resulting
from the nonretarded interaction between surface plasmons

[8,17,18,33,34]. On the other hand, a grating is known for
modifying the electromagnetic near field by affecting the
behavior of surface plasmon modes and effectively increasing
the plasma wavelength (as discussed above). Therefore, one
expects a wider nonretarded regime for the case of metallic
gratings. Figure 7 shows the grating-plane and the plane-plane
pressure normalized by Pfilling with the respective filling factors
(f = 1 for the plane-plane configuration). As expected, the
transition from the a−3 to the a−4 behavior happens at
a larger distance for the plane-grating than for the plane-
plane configuration (i.e., the grating-plane case has a wider
nonretarded regime). The same figure also shows that, on the
contrary, the thermal regime is not affected and starts roughly
at the same point for both structures.

VIII. CONCLUSIONS

In summary, we have developed a quasianalytical modal
approach to computing Casimir interactions involving 1D
lamellar gratings. The method can be generalized to more
complex nanostructures by approximating them via slicing as
a collection of multilayered lamellar gratings [31,32]. The key
features of our method is that the eigenmodes of the grating
can be solved for analytically, while the eigenfrequencies
are solutions to a simple transcendental equation (34). Apart
from these fundamental aspects, we have also presented an
approach to calculate the Casimir interaction without resorting
to any matrix inversion that avoids several potential numerical
instabilities, improves the precision of the numerical results,
and can be used in other nonmodal frameworks. We studied
analytically the form of the eigenvalues in some specific
limiting cases, and discussed their impact on the scattering
operators and on the Casimir interaction. By analyzing the
mode structure at real frequencies, this formalism can also
be applied to study other fluctuation-induced interactions
(thermal emission, near-field heat transfer, etc.).
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